

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature I declare this is my own w	vork.

A-level FURTHER MATHEMATICS

Paper 1

Wednesday 22 May 2024

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
TOTAL	

PMT

Answer all questions in the spaces provided.

Do not write outside the box

The roots of the equation $20x^3 - 16x^2 - 4x + 7 = 0$ are α , β and γ 1

Find the value of $\alpha\beta + \beta\gamma + \gamma\alpha$

Circle your answer.

[1 mark]

$$-\frac{4}{5}$$

$$-\frac{1}{5}$$

$$\frac{1}{5}$$

The complex number $z = e^{\frac{i\pi}{3}}$ 2

Which **one** of the following is a real number?

Circle your answer.

[1 mark]

$$z^5$$

$$z^{6}$$

$$z^4$$
 z^5 z^6 z^7

3 The function f is defined b

$$f(x) = x^2 \qquad (x \in \mathbb{R})$$

Find the mean value of f(x) between x = 0 and x = 2

Circle your answer.

[1 mark]

$$\frac{2}{3}$$

 $\frac{4}{3}$

$$\frac{8}{3}$$

16 3

4 Which **one** of the following statements is correct?

Tick (✓) one box.

[1 mark]

$$\lim_{x\to 0} (x^2 \ln x) = 0$$

$$\lim_{x\to 0} (x^2 \ln x) = 1$$

$$\lim_{x\to 0} (x^2 \ln x) = 2$$

$$\lim_{x\to 0} (x^2 \ln x)$$
 is not defined.

Turn over for the next question

5	The points A, B and C have coordinates $A(5, 3, 4)$, $B(8, -1, 9)$ and $C(12, 5, 10)$)
	The points A , B and C lie in the plane \prod	
5 (a)	Find a vector that is normal to the plane $\boldsymbol{\Pi}$	3 marks]

		PΝ	I
Do ou	not utsid bo	write e the x	e

Find a Cartesian equation of the plane Π	[2 mai

Do	not	write
out	side	e the
	ho	ĸ

6	The sequence $u_1, u_2, u_3,$ is defined by	
	$u_1 = 1$	
	$u_{n+1} = u_n + 3n$	
	Prove by induction that for all integers $n \ge 1$	
	$u_n = \frac{3}{2}n^2 - \frac{3}{2}n + 1$	
	[4 mark	s]
		-
		-
		_
		_
		-
		_
		-
		-
		_
		-

7

Turn over for the next question

8

7	The complex numbers z and w satisfy the simultaneous equations	
	$z + w^* = 5$	
	$3z^* - w = 6 + 4i$	
	0x - w = 0 + 41	
	Find z and w	
		[5 marks]

9

8	The ellipse E has equation	
	$x^2 + \frac{y^2}{9} = 1$	
	The line with equation $y = mx + 4$ is a tangent to E	
	Without using differentiation show that $m=\pm\sqrt{7}$	
		[4 marks]

9 (a)	It is given that
	$p = \ln \left(r + \sqrt{r^2 + 1} \right)$
	Starting from the exponential definition of the sinh function, show that $\sinh p = r$ [4 marks]

9 (b)	Solve the equation	
	$\cosh^2 x = 2\sinh x + 16$	
	Give your answers in logarithmic form.	
		[4 marks]

10	The complex numbers \boldsymbol{z} and \boldsymbol{w} are defined by	
	$z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$	
	and $w = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$	
	By evaluating the product zw , show that	
	$\tan\frac{5\pi}{12} = 2 + \sqrt{3}$	[6 marks]

13		
Find $\frac{d}{dx}(x^2 \tan^{-1} x)$	[1 mark]	o not v utside box
Hence find $\int 2x \tan^{-1} x dx$	[4 marks]	

Turn over ▶

11 (a)

11 (b)

17	
The line L_1 has equation $\mathbf{r} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$	
The transformation T is represented by the matrix	
$\begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & 6 \\ -5 & 2 & -3 \end{bmatrix}$	
The transformation T transforms the line L_1 to the line L_2	
Show that the angle between L_1 and L_2 is 0.701 radians, correct to three decimal places.	
	[4 marks]

Find the sh	nortest distan	ce between	L_1 and L_2		
Give your a	answer in an	exact form.			[C
					[6 ma

13 (a)	Use de Moivre's theorem to show that	
	$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$	[3 marks]
13 (b)	Use de Moivre's theorem to express $\sin 3\theta$ in terms of $\sin \theta$	[2 marks]

13 (c)	Hence show that		
		$\cot^3 \theta = 3 \cot \theta$	
		$\cot 3\theta = \frac{\cot^3\theta - 3\cot\theta}{3\cot^2\theta - 1}$	
		300120-1	[4 marks]
			

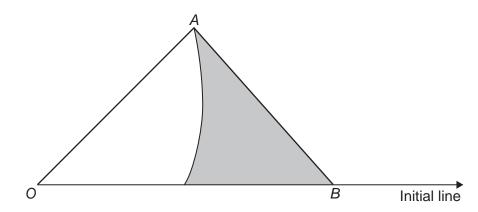
14	Solve the differential equation	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + y \tanh x = \sinh^3 x$	
	given that $y = 3$ when $x = \ln 2$	
	Give your answer in an exact form.	[7 monto]
		[7 marks]

Turn over for the next question

Do	not	V	vrite
oui	tside	9	the
	box	K	

15	A curve is defined parametrically by the equations	
	$x = \frac{3}{2}t^3 + 5$	
	$y=t^{\frac{9}{2}} \qquad (t\geq 0)$	
;	Show that the arc length of the curve from $t=0$ to $t=2$ is equal to 26 units. [5 mark	s]
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

	ne next question	



The curve C has polar equation $r = 2 + \tan \theta$

The curve C meets the line $\theta = \frac{\pi}{4}$ at the point A

The point B has polar coordinates (4, 0)

The diagram shows part of the curve C, and the points A and B

16 (a) Show that the area of triangle OAB is $3\sqrt{2}$ units.

[2 marks]

16 (b) Find the area of the shaded region.

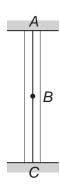
Give your answer in an exact form.

[7 marks]

Turn over for the next question

By making a	suitable substitution, sho		
	$\int_{-2}^{1} \sqrt{x^2 + 6x + 8} \mathrm{d}x$	$=2\sqrt{15}-\frac{1}{2}\cosh^{-1}(4)$	[7 mark

-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
	Turn over for the next qu	estion


Do not	write
outside	the
hox	•

18 In this question use $g = 9.8 \text{ m s}^{-2}$

Two light elastic strings each have one end attached to a small ball ${\it B}$ of mass 0.5 kg

The other ends of the strings are attached to the fixed points *A* and *C*, which are 8 metres apart with *A* vertically above *C*

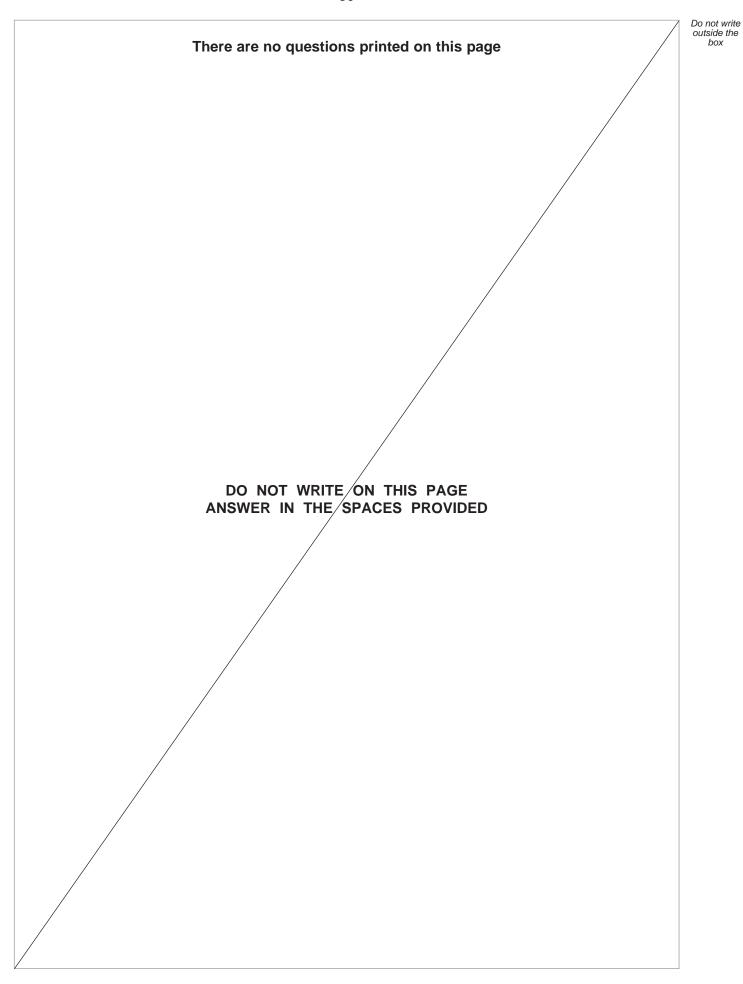
The whole system is in a thin tube of oil, as shown in the diagram below.

The string connecting A and B has natural length 2 metres, and the tension in this string is 7e newtons when the extension is e metres.

The string connecting B and C has natural length 3 metres, and the tension in this string is 3e newtons when the extension is e metres.

18 (a)	Find the extension of each string when the system is in equilibrium.	[3 marks]	

18 (b)	It is known that in a large bath of oil, the oil causes a resistive force of magnitude $4.5v$ newtons to act on the ball, where v m s ⁻¹ is the speed of the ball.
	Use this model to answer part (b)(i) and part (b)(ii).
18 (b) (i)	The ball is pulled a distance of 0.6 metres downwards from its equilibrium position towards <i>C</i> , and released from rest.
	Show that during the subsequent motion the particle satisfies the differential equation
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 9\frac{\mathrm{d}x}{\mathrm{d}t} + 20x = 0$
	where x metres is the displacement of the particle below the equilibrium position at time t seconds after the particle is released.
	[3 marks]



18 (b) (ii)	Find x in terms of t	[5 marks]

		Do not write outside the box
18 (c)	State one limitation of the model used in part (b) [1 mark]	
	· · · · · · · · · · · · · · · · · · ·	
	END OF QUESTIONS	
	LND OF WOLDHONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
Hamber	write the question numbers in the left-hand margin.
	<u>(</u>
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 AQA and its licensors. All rights reserved.

